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ABSTRACT
We present a proactive energy management framework

that integrates predictive dynamic building models and
day-ahead forecasts of disturbances affecting efficiency
and costs. This enables an efficient management of re-
sources and an accurate prediction of the daily electricity
demand profile. The strategy is based on the on-line solu-
tion of mixed-integer nonlinear programming problems.
The framework is able to integrate forecasts of weather
conditions, fuel prices, heat gains, and utility demands.
In addition, it can capture net-metering interactions us-
ing agent-based market models. We claim that a large
adoption level of this proactive technology can improve
the predictability of the overall electricity demand at high-
level power grid operations such as unit commitment and
economic dispatch which can be used to minimize the
overall reserves.

INTRODUCTION
In an attempt to minimize energy consumption and

costs, next-generation building systems will need to be-
come more active participants of the electricity market by
reducing and shaping their electricity demand profile. In
addition, they will need to manage resources in an ef-
ficient manner under highly volatile conditions. These
requirements can be met through the adoption of net-
metering schemes and the installation of cogeneration and
storage units. While these actions can lead to significant
reductions in the overall costs of the power grid, building
operations will also become significantly more complex.

A key conceptual problem of current energy manage-
ment (EM) technology is that it is reactive, in the sense
that the operational decisions (controls) are updated based
only on current information of disturbances such as the
weather conditions and electricity prices. This type of
strategy is followed, for instance, in widely used simula-
tion packages such as EnergyPlus or TRNSYS (Crawley
et al. 1999; Klein, Duffie, and Beckman 1976). This lack
of proactiveness has important effects on the costs and re-
sponsiveness of the automation system, mainly because
the dynamic responses of the building zones are slow (on
the order of hours). This also limits the possibility of
exploiting daily disturbance trends and of using storage

components (batteries, thermal, and ice storage) to manip-
ulate the electricity demand profile. In addition, the lack
of proactiveness limits the robustness of feedback control
loops and increases the frequency of startups and shut-
downs of pumps, chillers, and fans, leading to decreased
equipment lifetime.

In this work, we propose a proactive, optimization-
based EM framework able to incorporate disturbance
forecasts and predictive building models. This will en-
able the building automation system to (1) manage multi-
ple generation and storage components systematically, (2)
exploit future disturbance trends affecting costs, (3) pre-
dict the daily electricity demand profile, and (4) increase
the robustness of the feedback control loops. The core
of the proposed EM framework is a mixed-integer opti-
mal control problem that can be cast as a mixed-integer
nonlinear programming (MINLP) problem. The proac-
tive EM approach is motivated from the fact that state-
of-the-art optimization tools are capable of solving large-
scale problems with hundreds of thousands of variables
on standard personal computers. This makes the proposed
technology suitable for massive deployment. The paper is
structured as follows: We first motivate the development
of the proposed EM framework through a brief analysis of
the future operational environments of building systems.
We then describe the components of the EM framework
including a general mixed-integer optimal control formu-
lation, forecasting capabilities, and agent-based market
models.

NEXT-GENERATION BUILDING SYSTEMS

In this section, we describe the operational environ-
ments of building systems in order to motivate the compo-
nents and characteristics of the proposed EM framework.
We discuss issues related to the effect of cogeneration and
storage technologies on costs, hierarchical operations, dis-
turbances arising in buildings, the formulation of the EM
problem, the effect of using physics and empirical models,
strategies to forecast disturbances, and solution strategies
for the EM problem.
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Cogeneration and Storage Technologies

Building automation systems can reduce electricity
costs by shaping the demand profile. For instance, since
in hot regions the electricity demand is dominated mostly
by air conditioning, it is possible to shift the peak de-
mand by making use of the thermal mass of the building
(Braun 1990; Braun, Montgomery, and Chaturvedi 2001).
In this case, the use of electricity is maximized when it
is cheaper, which is usually at night. With the introduc-
tion of the smart grid in unregulated markets and with
a major deployment of solar and wind resources, large-
scale storage, and plug-in hybrid electric vehicles, elec-
tricity pricing structures will become significantly more
complex and volatile. Consequently, peak shifting strate-
gies will not be sufficient to minimize costs. However,
the conceptual idea of shaping the demand profile can
still be exploited by installing multiple cogeneration and
storage facilities in the building. Co-generation technolo-
gies include integrated heat and power systems, including
gas and diesel turbines, solid-oxide and molten carbonate
fuel-cells and microturbines; solar and wind power; so-
lar heating and cooling; ice and thermal storage; and bat-
teries. With this added flexibility, buildings will be able
to sell and buy electricity from the grid, becoming much
more active participants of the grid and forming local mar-
kets with other buildings.

Dynamic Disturbances Affecting Costs and Efficiency

The basic operational objective in buildings is to pro-
vide comfort to occupants at minimum energy costs. This
implies balancing heat in the building zones to control
temperatures and to balance air to control pressure and
pollutant (e.g., carbon dioxide) concentrations at appro-
priate levels. This task is complicated because buildings
are operated in the presence of persistent and volatile dis-
turbances such as external temperature, radiation, wind
and humidity conditions; heat gains due to equipment,
lighting, and heating; and heat and air losses. In addi-
tion, complex occupant behaviors have a strong influence
on this. Finally, changing prices of natural gas, diesel,
and electricity can also be thought as disturbances affect-
ing the economic performance of the building. Most of
these disturbances exhibit periodic trends on time-scales
from days to months. For instance, occupant and lighting
heat gains exhibit daily and weekly periods, whereas solar
radiation, wind speed, and temperature exhibit both daily
and monthly periods. Weather conditions are particularly
critical because, with the deployment of cogeneration fa-
cilities, they will affect not only the demand but also the
supply of electricity to the building. In addition, electric-
ity prices traditionally have been handled as an exogenous
disturbance, in the sense that the EM system has no influ-
ence over it. However, in next-generation buildings, this

disturbance will become endogenous because the EM sys-
tem demand will have an effect on the electricity market,
which in turn dictates the prices.

Hierarchical Decision-Making
The operational decisions in building automation sys-

tems can be conceptually decomposed, in analogy to
power grid operations, into hierarchical levels such as
unit commitment, economic dispatch, and feedback con-
trol. This decision hierarchy is illustrated in Figure 1.
The unit commitment decisions consist of setting up the
schedule of startup and shutdown tasks for the equipment
units. Once this on/off schedule is set, an economic dis-
patch layer determines the operating set-points based on
an economic metric. The set-points are sent to a feed-
back control layer. Commitment and dispatch tasks are
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Figure 1: Hierarchical representation of building opera-
tions.

the most critical steps because they implicitly manage all
of the building energy resources (such as passive and ac-
tive storage devices; photovoltaic, wind, and grid power;
and fuel) to satisfy occupancy HVAC and lighting de-
mands while trying to minimize the overall energy costs.
Consequently, the commitment/dispatch layer can also be
seen as an energy manager. This manager can consist of
a logic-based system or human operator that determines
the operational decisions based on experience in response
to hourly variations of disturbances such as external am-
bient conditions, electricity and fuel costs, and heat gains.
Logic-based management systems are based on decision
tree rules (e.g., if-then-else statements) and are widely
used for EM in literature reports and in EnergyPlus (El-
lis, Torcellini, and Crawley 2007; Vosen and Keller 1999;
Ulleberg 2004). A problem with these strategies is that
design and training (tuning) of the decision-making tree
structure and thresholds can become intractable in tightly



coupled systems. In addition, these strategies are not ro-
bust in the presence of situations not considered during
the training phase. To avoid these limitations, the energy
manager can use an optimization-based approach. This
approach uses a physical model coupled to an optimiza-
tion solver to compute the set-points and on/off status of
the units all at once. This approach has been widely used
in chemical process operations where tight energy inte-
grations exist, and it has generated annual savings on the
order of several million dollars a year per facility (White
1998). We believe that the use of optimization-based EM
technology will become critical in next-generation build-
ing systems where generation and storage components
will be heterogeneous and where the number of opera-
tional degrees of freedom and the degree of uncertainty
will significantly increase. We illustrate this increasing
level of operational complexity in Figure 2.
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Figure 2: Generation and storage technologies portfolio
for next-generation building system.

PROACTIVE ENERGY MANAGEMENT
We propose a proactive, optimization-based EM frame-

work able to incorporate disturbance forecasts and pre-
dictive building models. The core of the proposed proac-
tive EM framework is a generalized mixed-integer opti-
mal control problem of the form:

min
w(τ),u(τ)

1
Ns

Ns

∑
j=1

[∫ tk+T

tk
φ(z j(τ),y j(τ),w(τ),u(τ),χ j(τ))dτ

]
(1a)

s.t.
dz j

dτ
= f(z j(τ),y j(τ),w(τ),u(τ),χ j(τ))

0 = g(z j(τ),y j(τ),w(τ),u(τ),χ j(τ))
0 ≥ h(z j(τ),y j(τ),w(τ),u(τ),χ j(τ))

 τ ∈ [tk, tk +T ]

(1b)

z j(tk) = xk, j = 1, ...,Ns. (1c)

The problem consists of finding optimal policies for a set
of binary w(τ) and continuous control variables u(τ) that

minimize the future expected cost of the system over the
time horizon τ ∈ [tk, tk +T ]. The binary controls represent
the on/off status for the equipment units at a given time.
The continuous controls representing fuel, electric power,
cooling water, air flow rates, and so on. The cost can be
a composite objective function including fuel and elec-
tricity costs and storage utilization. The model is repre-
sented in general form as a set of differential and algebraic
equations (DAEs) where x(τ) and y(τ) are the differential
and algebraic state variables, respectively. The states rep-
resent zone and wall temperatures, concentrations, pres-
sures, and humidities, among others. The current state of
the building system at time tk is given by xk. The build-
ing system is affected by a set of uncertain disturbances
χ j(τ), τ ∈ [tk, tk + T ], j = 1, ...,Ns that need to be fore-
casted. The proactive energy manager accounts for uncer-
tainty in these forecasts by considering Ns realizations or
scenarios which are obtained by sampling a given proba-
bility distribution P . Incorporating uncertainty informa-
tion can be critical to enhance the robustness of the op-
erating policies. The EM optimization problem is solved
in a closed-loop manner by updating the current building
states and forecasts on a moving horizon window.

We have used simplified variants of the proposed EM
framework in a building system equipped with electric
and natural gas heating and in a photovoltaic hybrid sys-
tem. These studies have focused on analyzing the impact
of the forecast horizon length on economic performance
(Zavala et al. 2009; Zavala, Anitescu, and Krause 2009).
In the building system, we found that combining forecasts
of electricity prices and of the ambient temperature leads
to cost savings. The optimal timing at which to start the
cooling at night directly depends on the ambient tempera-
ture expected the next day. In addition, special care needs
to be taken to stay within the thermal comfort zone at
all times. To analyze the effect of increasing the fore-
cast horizon of the ambient temperature, we formulate an
optimal control problem of the form in (1). The model
considers the dynamic response of the building internal
temperature and of the building wall and trying to find
the optimal temperature set-point that minimizes the heat-
ing and cooling costs under a given electricity price struc-
ture. The ambient temperature enters the model through a
boundary condition at the external face of the wall.

In Figure 3 we present the effect of the forecast hori-
zon of the proactive EM problem (1) on the relative en-
ergy costs for two insulation levels. As can be seen, for
a purely reactive strategy, the relative costs (compared to
the optimal policy with an infinite horizon) can go as high
as 24%. In addition, we observe that a horizon of 1 day
is sufficient to achieve the minimum potential costs. The
reason is that the thermal mass of the building cannot be
used for a long time because there exist losses through



the wall. In fact, we found that if the building insula-
tion is enhanced, the costs for the purely reactive strat-
egy increase significantly. On the other hand, when the
building is poorly insulated, increasing the forecast hori-
zon does not reduce the costs. In other words, the eco-
nomic potential of adding forecast information is tightly
related to the ability to store energy in the system and to
use it during off-peak times. Another potential benefit of
using forecast information is to minimize the number of
startups and shutdowns of equipment such as light bulbs,
water chillers, and gas furnaces, thereby enhancing the
responsiveness of the automation system, avoiding satu-
ration of actuators, and reducing equipment wearing. To
illustrate the effect of productiveness on storage manage-
ment and equipment wearing, we also present simulation
results on a photovoltaic cogeneration system. The photo-
voltaic system is coupled to two storage options described
in (Ulleberg 2004; Zavala, Anitescu, and Krause 2009)
and is sketched in Figure 4. The first storage option has
a large capacity but low round-trip efficiency (hydrogen
with 70% efficiency), while the second has a small capac-
ity but high efficiency (battery with 90% efficiency). The
operating principle of this system is similar to that of other
multistorage systems, such as photovoltaic-compressed
air-battery or wind-hydrogen-hydrothermal systems. In
these systems, it is necessary to decide the best strategy
to store the intermittent power input in order to minimize
power losses and satisfy a given load. To compute the
optimal policies, we formulate problem (1) with forecast
horizons ranging from 1 hour to 14 days. In the middle
graph of Figure 4, we present the effect of increasing the
horizon on the relative operating costs (using a one-year
forecast policy as reference). In the bottom graph of this
same figure we show the effect of the forecast horizon on
the power profiles of the fuel cell system. Note that: (1)
the relative operating costs decay quickly to zero as the
horizon is increased; (2) for a purely reactive strategy (1
hr), the relative costs can go as high as 300%; and (3) the
close-to-optimal costs can be obtained with a relatively
short forecasts (1-14 days). The economic penalty of us-
ing a forecast of 1 day is just an increase of 10% in rela-
tive costs, whereas the penalty for a forecast of 12 hr goes
up to 31%. For this system, as the horizon is increased,
it is possible to exploit the more efficient battery storage
system to reduce the power losses of the hydrogen stor-
age loop. Note also that, as the horizon is increased, the
power profiles of the fuel cell become more smooth, re-
ducing equipment wearing.

Physics-Based Vs. Empirical Building Models

The DAE model constraints can contain detailed heat
and mass transfer in the building zones, HVAC balances,
and thermodynamic relations (e.g., steam tables). Alter-
natively, the model might incorporate only aggregated en-
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Figure 3: Schematic representation of building system
(top). Impact of forecast horizon on energy costs of build-
ing HVAC system with base insulation (middle) and en-
hanced insulation (bottom).
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Figure 4: Schematic representation of photovoltaic co-
generation system (top). Effect of forecast horizon on op-
erational costs of multi storage hybrid system (middle).
Impact of forecast horizon on fuel cell power output (bot-
tom).

ergy and mass balances. The degree of model sophistica-
tion is system dependent and limited by implementation
and development costs. Next-generation building systems
will be designed by using advanced models such as Ener-
gyPlus or TRNSYS. These models can then be reused and
exploited by the EM system. On the other hand, the devel-
opment of a sophisticated model for an already installed
building system might not be justifiable. In this case, it is
possible to resort to aggregated or lumped energy balances
that are relatively easy to build and implement using on-
line temperature measurements (Braun 1990). However,
since some physical information is lost in the aggrega-
tion procedure, translating the aggregated state variables
to implementable set-points can be complicated.

Trade-Offs between Investment Costs and Operational
Savings

In previous studies, we have found that the potential op-
erational rewards of advanced EM technology are directly
related to the ability of building to isolate itself from the
power grid. In other words, if electricity can be produced
on-site at a lower price compared to that of the power
grid, then the investment in EM technology may pay off.
Clearly, it is clear that the EM should be provided with
extra equipment to beat the power grid prices. Therefore,
large investments in additional cogeneration, heat integra-
tion, and storage units are necessary. As a consequence,
there exists a trade-off between investment costs and op-
erational savings. In order to justify the installation of
additional units, the annualized investment cost must be
lower that the annual operational savings achieved by the
EM. These savings in turn depend on the price margins. In
addition, natural gas and diesel prices come into play if in-
tegrated heat and power cogeneration systems are consid-
ered. All these imply that design and retrofitting tasks of
the building and of the utility system must be performed in
conjunction with detailed closed-loop EM studies consid-
ering historical disturbance data and climate change fore-
casts. Capturing climate changes is particularly critical
because the seasons are likely to displace in both space
and time. This can render installed technologies useless
throughout their lifetime.

Forecasting Dynamic Disturbances

A proactive EM system relies on accurate predictions
of disturbances. These disturbances can be predicted
by constructing empirical (e.g.; autoregressive, neural
networks, agents) and mechanistic (e.g., physics-based)
models. Ambient conditions such as temperature, hu-
midity, cloud cover, and wind speed can be predicted re-
liably by numerical weather prediction (NWP) models.
These predictions are subject to uncertainties stemming
both from initial atmospheric conditions and from imper-
fections in the numerical models (Kalnay 2002). For ac-



18 30 42 54 66 78 90 102
10

15

20

25

30

35

Local time from June 1st [hours]

T
em

pe
ra

tu
re

 [C
]

Figure 5: Temperature predictions using WRF.

curate predictions, the simulation is restarted at least ev-
ery day from a new state corrected for errors by incorpo-
rating observations. This task is called data assimilation.
Forecasting with NWP models is challenging because it
is computationally expensive and requires large compu-
tational resources. In addition, national weather centers
do not provide high-resolution forecasts for uncertainty
information (Chen et al. 2006). In a recent study, we
have performed an experiment for temperature forecast-
ing using the Weather Research and Forecasting (WRF)
model (Zavala et al. 2009). These forecasts were used
in proactive EM strategies for building systems. In Fig-
ure 5 we show the temperature forecasts for four days in
June 2006 together with their uncertainty for a location in
Chicago, IL together with real observations (denoted by
circles). We remark that the uncertainty interval (colored
shade) closely encapsulates the observations and therefore
the uncertainty model describes the forecast errors. This
is important for achieving robustness of a proactive EM
system.

The construction of empirical models to forecast am-
bient conditions relies on the availability of on-site mea-
surement data. In addition, our experience is that empir-
ical models cannot compute accurate day-ahead forecasts
of volatile trends such as the ambient temperature. Empir-
ical forecasts remain accurate only for a few hours, which
might nevertheless be sufficient depending on the appli-
cation, for instance, in Figure 3 it is clear that a fore-
cast horizon of a few hours can reduce costs. Empiri-
cal models are also the only alternative to forecast distur-
bances when no mechanistic model exists. For instance,
for forecasting natural gas prices, occupancy rates, and
electricity and hot water demands, and occupant behav-
iors. To forecast these disturbances, one can resort to neu-
ral networks (Miller, Sutton, and Werbos 1990), autore-
gressive time-series models (Box, Jenkins, and Reinsel
1994), or kernel-based models (Rasmussen and Williams
2006). Complex occupant behaviors can be captured us-
ing agent-based models (ABMS).

Capturing Electricity Market Effects

The EM system must account for two-way market in-
teractions with the power grid. Buildings vary widely in
terms of physical, functional, occupational, ownership,
management, decision-making, and market structure as-
pects. All of these factors will influence the total electric-
ity demand, its dynamic pattern, the electricity contract
with the distribution company, and eventually, wholesale
power prices. The real-time price signals emerging from
these supply and demand interactions will influence the
optimal operating strategies of the EM system.

Modeling techniques are required to analyze and fore-
cast market interactions and to obtain deeper insights into
the impacts and various feedbacks arising between the
building and the power grid. This information will be par-
ticularly critical with the advent of the smart grid. Market
models can be used to analyze the energy consumption
pattern of EM systems and the interaction with the power
grid under various conservation scenarios and demand-
side schemes, including reliability-based (load response)
and market-based (price response) programs. These tools
can also be used to capture smart grid interactions. Market
behavior can be predicted by using multilevel optimiza-
tion (game theoretical) problems that capture economic
interactions among multiple players. However, these type
of models assume that the market is in equilibrium, which
might not be a reasonable assumption in building opera-
tions. An alternative are agent-based models such as the
Electricity Market Complex Adaptive System (EMCAS)
model (Conzelmann et al. 2005).

The market model lying at the interface between the
grid and the EM system (see Figure 1) can provide price-
demand curve information that can be exploited by the
EM system. The market model can switch to a new con-
tract with the utilities depending on the season or chang-
ing building activities thus updating the price-demand
curve. At the same time, the EM system can provide can-
didate demand profiles so that the market model can de-
termine the new contract. This two-way interaction will
be adapted based on the most current market conditions
that rely mostly on the season and on fuel prices at the
unit commitment and energy dispatch level.

On-Line Solution of Energy Management Problem

The EM problem (1) is a mixed-integer optimal con-
trol problem (MIOCP). This is one of the most complex
classes of optimization problems. The complexity stems
from the presence of integer variables, the large dimen-
sionality of building models, and the large number of de-
cision variables or degrees of freedom. Solution methods
for mixed-integer optimal control problems such as (1)
are not well developed, and existing approaches (Sager
2009) do not readily take advantage of the special struc-



ture of the EM problem. To solve these problems, it is
necessary to extend existing techniques. Time discretiza-
tion of problem (1) results in a mixed-integer nonlinear
program (MINLP) with a large number of integer vari-
ables. Traditional methods for MINLPs, such as branch-
and-bound (Goux and Leyffer 2002), outer approximation
(Duran and Grossmann 1986), or LP/NLP-based branch-
and-bound (Bonami et al. 2008; Abhishek, Leyffer, and
Linderoth 2006), can in principle be applied to the re-
sulting MINLP. These methods have in common that they
perform a tree search to resolve the combinatorial nature
of the binary decision variables. Because of this, these
methods are unlikely to be successful for problems where
either nw or nt is large, and new techniques must be de-
veloped. The EM problem, however, has special struc-
ture that can make it feasible to solve these problems in
a reasonable amount of time. For example, the following
techniques can be used to address this problem:

• Warm-Starting Techniques for MINLP. Tradition-
ally, MINLPs are solved in isolation. However, as
we move from subsequent solution times for the EM
problem tk to tk+1, we can exploit the fact that the
solution to these two problems is closely related. We
will explore a windowing technique similar to tech-
niques used in nonlinear model predictive control
(Zavala and Biegler 2009). We will solve the re-
sulting MINLP every hour over a 24 hour horizon,
implement the resulting control over the next hour,
and then solve the next MINLP, starting at tk+1 over
a 24-hour horizon. This knowledge can be used in
several ways. First, it is possible to update the cur-
rent integer controls by solving a continuous control
problem, and obtain a new upper bound. Second, one
can reuse branching information such as pseudocosts
(Gauthier and Ribière 1977) that improve the tree
search. One can also use feasibility heuristics such
as local branching (Fischetti and Lodi 2002).

• Approximation and Hierarchical Approaches. In
the previous strategy we have assumed that the en-
tire MIOCP has to be solved at each time. An al-
ternative approximation that we will explore is ob-
tained by hierarchical decomposition and lineariza-
tion of the control problem (1). Discretizing the
linearized problem leads to a mixed-integer linear
program (MILP), which can be solved with solvers
such as CPLEX or CBC. These solvers can han-
dle problems several orders of magnitude larger than
MINLPs. The drawback of this approach is that the
nonlinear dynamics of the control problem are only
approximately taken into account so the integer so-
lution might not be optimal. It is possible to miti-
gate the effect of this approximation by fixing the bi-
nary controls and resolving (1) for the nonlinear con-

trols by solving a nonlinear programming problem
(NLP) with solvers such as KNITRO (Byrd, Gilbert,
and Nocedal 2000) or IPOPT (Wächter and Biegler
2006). In other words, the MILP updates the binary
controls while the NLP updates the continuous con-
trols.

These strategies can enable the solution of large-scale EM
problems with thousands of states and continuous con-
trols and hundreds of binary controls on standard personal
computers. Because of the large number of degrees of
freedom encountered in buildings, however, the optimiza-
tion solvers need access to derivative information to cap-
ture the effect of controls on the building states. Current
building simulation packages such as EnergyPlus (Craw-
ley et al. 1999; Ellis, Torcellini, and Crawley 2007) or
TRNSYS (Klein, Duffie, and Beckman 1976) do not pro-
vide these capabilities. With this, the building models can
be treated only as black boxes by optimization solvers,
forcing the user to rely on logic-based strategies, genetic
algorithms, or derivative-free optimization. These ap-
proaches use repetitive and time-consuming simulations
of the building model and are highly inefficient because
the number of simulations is related to the number of de-
cision variables. This seriously limits the scope of on-
line energy management in building systems. We believe
that building simulation packages should incorporate ca-
pabilities to interface them with automatic differentiation
capabilities (Griewank 2000). This will enable the imple-
mentation of highly sophisticated EM applications with
detailed building models.

CONCLUSIONS
In this paper, we present a proactive energy manage-

ment framework that integrates predictive dynamic build-
ing models and day-ahead forecasts of disturbances af-
fecting efficiency and costs. We argue that physics-based
building models will become crucial for the operation of
next-generation buildings because they will enable an ef-
ficient management of resources and an accurate predic-
tion of the daily electricity demand profile. One of the
main advantages of the proactive framework is that it en-
ables integration of forecast models of weather condi-
tions, prices, and utilities demands. In addition, it can
capture occupant behaviors and market interactions by us-
ing agent-based models. The framework is based on the
on-line solution of mixed-integer nonlinear programming
problems. We present strategies that can enable the solu-
tion of these challenging problems on standard personal
computers. We claim that a large adoption level of this
technology can improve the predictability of the electric-
ity demand at high-level grid operations such as unit com-
mitment and economic dispatch which can be used to min-
imize reserves. As part of future work, we are interested



in testing the presented concepts in a comprehensive case
study.
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